Regeneration of cochlear efferent nerve terminals after gentamycin damage.
نویسندگان
چکیده
Chickens recover auditory function after hair cell loss caused by ototoxic drug damage or acoustic overstimulation, indicating that mechanisms exist to reestablish appropriate neuronal connections to regenerated hair cells. However, despite similar hair cell regeneration times, hearing recovery takes substantially longer after aminoglycoside than after sound damage. We have therefore begun examining damage and regeneration of efferent nerve terminals by immunolabeling whole-mount cochleae for differentially localized synaptic proteins and by visualizing the distribution of label with confocal microscopy. In undamaged cochleae, the synaptic proteins synapsin and syntaxin show similar distribution patterns corresponding to the large cup-like terminals on short hair cells. After gentamycin administration, these terminals are disrupted as hair cells are lost, leaving smaller, more numerous synapsin-reactive structures in the sensory epithelium. Syntaxin reactivity remains associated with the extruded hair cells, indicating that the presynaptic membrane is still attached to the postsynaptic site. In contrast, after sound damage, both synapsin and syntaxin reactivity are lost from the epithelium with extruded hair cells. As regenerated hair cells differentiate after gentamycin treatment, the synapsin labeling associated with cup-like efferent endings reappears but is not completely restored even after 60 d of recovery. Thus, efferent terminals are reestablished much more slowly than after sound damage (), consistent with the prolonged loss of hearing function. This in vivo model system allows comparison of axonal reconnection after either complete loss (sound damage) or partial disruption (gentamycin treatment) of axon terminals. Elucidating the differences in recovery between these injuries can provide insights into reinnervation mechanisms.
منابع مشابه
Morphological correlates of functional recovery in the chicken inner ear after gentamycin treatment.
Newly hatched chickens were allowed to survive 6, 10, 15, and 20 weeks after 10 days of gentamycin sulfate treatment. Ultrastructural studies of hair cells and nerve terminals in the auditory receptor organ, the basilar papilla, were carried out with transmission and scanning electron microscopes. Attention was paid to absolute sensory cell (hair cell) numbers, stereocilia maturity and orientat...
متن کاملDegeneration in the Efferent Nerve Endings in the Cochlea after Axonal Section
Both roots of the olivo-cochlear nerve bundle to one ear were transected in the brain stems of 12 chinchillas. The animals were sacrificed at times ranging from 2 to 35 days after surgery. The normal olivo-cochlear terminals on the external hair cells in the cochleas of the control ears contained many mitochondria and small vesicles of constant size. The earliest evidence for degeneration was t...
متن کاملEfferent feedback slows cochlear aging.
The inner ear receives two types of efferent feedback from the brainstem: one pathway provides gain control on outer hair cells' contribution to cochlear amplification, and the other modulates the excitability of the cochlear nerve. Although efferent feedback can protect hair cells from acoustic injury and thereby minimize noise-induced permanent threshold shifts, most prior studies focused on ...
متن کاملType II Cochlear Ganglion Neurons Do Not Drive the Olivocochlear Reflex: Re-Examination of the Cochlear Phenotype in Peripherin Knock-Out Mice
The cochlear nerve includes a small population of unmyelinated sensory fibers connecting outer hair cells to the brain. The functional role of these type II afferent neurons is controversial, because neurophysiological data are sparse. A recent study (Froud et al., 2015) reported that targeted deletion of peripherin, a type of neurofilament, eliminated type II afferents and inactivated efferent...
متن کاملChronic Conductive Hearing Loss Leads to Cochlear Degeneration
Synapses between cochlear nerve terminals and hair cells are the most vulnerable elements in the inner ear in both noise-induced and age-related hearing loss, and this neuropathy is exacerbated in the absence of efferent feedback from the olivocochlear bundle. If age-related loss is dominated by a lifetime of exposure to environmental sounds, reduction of acoustic drive to the inner ear might i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 9 شماره
صفحات -
تاریخ انتشار 1998